When topology triggers a phase transition
Michael Kastner
Physica A: Statistical Mechanics and its Applications, 2006, vol. 365, issue 1, 128-131
Abstract:
Two mathematical mechanisms, responsible for the generation of a thermodynamic singularity, are individuated. For a class of short-range, confining potentials, a topology change in some family of configuration space submanifolds is the only possible such mechanism. Two examples of systems in which the phase transition is not accompanied by a such topology change are discussed. The first one is a model with long-range interactions, namely the mean-field ϕ4-model, the second example is a one-dimensional system with a non-confining potential energy function. For both these systems, the thermodynamic singularity is generated by a maximization over one variable (or one discrete index) of a smooth function, although the context in which the maximization occurs is very different.
Keywords: Phase transition; Topology; Entropy; Analyticity; Long-range interaction (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106000768
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:365:y:2006:i:1:p:128-131
DOI: 10.1016/j.physa.2006.01.036
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().