Statistical descriptions of nonlinear systems at the onset of chaos
Massimo Coraddu,
Marcello Lissia and
Roberto Tonelli
Physica A: Statistical Mechanics and its Applications, 2006, vol. 365, issue 1, 252-257
Abstract:
Ensemble of initial conditions for nonlinear maps can be described in terms of entropy. This ensemble entropy shows an asymptotic linear growth with rate K. The rate K matches the logarithm of the corresponding asymptotic sensitivity to initial conditions λ. The statistical formalism and the equality K=λ can be extended to weakly chaotic systems by suitable and corresponding generalizations of the logarithm and of the entropy. Using the logistic map as a test case we consider a wide class of deformed statistical description which includes Tsallis, Abe and Kaniadakis proposals. The physical criterion of finite-entropy growth K strongly restricts the suitable entropies. We study how large is the region in parameter space where the generalized description is useful.
Keywords: Statistics; Chaos; Entropy (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843710600046X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:365:y:2006:i:1:p:252-257
DOI: 10.1016/j.physa.2006.01.007
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().