Unique additive information measures—Boltzmann–Gibbs–Shannon, Fisher and beyond
P. Ván
Physica A: Statistical Mechanics and its Applications, 2006, vol. 365, issue 1, 28-33
Abstract:
It is proved that the only additive and isotropic information measure that can depend on the probability distribution and also on its first derivative is a linear combination of the Boltzmann–Gibbs–Shannon and Fisher information measures. Power-law equilibrium distributions are found as a result of the interaction of the two terms. The case of second order derivative dependence is investigated and a corresponding additive information measure is given.
Keywords: Fisher information; Non-extensive statistics; Additivity; Schrödinger–Madelung equation (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106000720
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:365:y:2006:i:1:p:28-33
DOI: 10.1016/j.physa.2006.01.027
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().