EconPapers    
Economics at your fingertips  
 

Nonextensive aspects of small-world networks

Hideo Hasegawa

Physica A: Statistical Mechanics and its Applications, 2006, vol. 365, issue 2, 383-401

Abstract: Nonextensive aspects of the degree distribution in Watts–Strogatz (WS) small-world networks, PSW(k), have been discussed in terms of a generalized Gaussian (referred to as Q-Gaussian) which is derived by the three approaches: the maximum-entropy method (MEM), stochastic differential equation (SDE), and hidden-variable distribution (HVD). In MEM, the degree distribution PQ(k) in complex networks has been obtained from Q-Gaussian by maximizing the nonextensive information entropy with constraints on averages of k and k2 in addition to the normalization condition. In SDE, Q-Gaussian is derived from Langevin equations subject to additive and multiplicative noises. In HVD, Q-Gaussian is made by a superposition of Gaussians for random networks with fluctuating variances, in analogy to superstatistics. Interestingly, a singlePQ(k) may describe, with an accuracy of |PSW(k)-PQ(k)|≲10-2, main parts of degree distributions of SW networks, within which about 96–99% of all k states are included. It has been demonstrated that the overall behavior of PSW(k) including its tails may be well accounted for if the k-dependence is incorporated into the entropic index in MEM, which is realized in microscopic Langevin equations with generalized multiplicative noises.

Keywords: Nonextensive statistics; Small-world networks; Information entropy (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437105010496
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:365:y:2006:i:2:p:383-401

DOI: 10.1016/j.physa.2005.10.004

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:365:y:2006:i:2:p:383-401