Content-based network model with duplication and divergence
Yasemin Şengün and
Ayşe Erzan
Physica A: Statistical Mechanics and its Applications, 2006, vol. 365, issue 2, 446-462
Abstract:
We construct a minimal content-based realization of the duplication and divergence model of genomic networks introduced by Wagner [Proc. Natl. Acad. Sci. 91 (1994) 4387] and investigate the scaling properties of the directed degree distribution and clustering coefficient. We find that the content-based network exhibits crossover between two scaling regimes, with log-periodic oscillations for large degrees. These features are not present in the original gene duplication model, but inherent in the content-based model of Balcan and Erzan. The scaling form of the degree distribution of the content-based model turns out to be robust under duplication and divergence, with some re-adjustment of the scaling exponents, while the out-clustering coefficient goes over from a weak power-law dependence on the degree, to an exponential decay under mutations which include splitting and merging of strings.
Keywords: Networks; Scaling behavior; Genomics (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106002603
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:365:y:2006:i:2:p:446-462
DOI: 10.1016/j.physa.2006.02.045
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().