Symbiosis in the Bak–Sneppen model for biological evolution with economic applications
M. Bartolozzi,
D.B. Leinweber and
A.W. Thomas
Physica A: Statistical Mechanics and its Applications, 2006, vol. 365, issue 2, 499-508
Abstract:
In the present work we extend the Bak–Sneppen model for biological evolution by introducing local interactions between species. This “environmental” perturbation modifies the intrinsic fitness of each element of the ecology, leading to higher survival probability, even for the less fit. While the system still self-organizes toward a critical state, the distribution of fitness broadens, losing the classical step-function shape. A possible application in economics is discussed, where firms are represented as evolving species linked by mutual interests.
Keywords: Complex systems; Evolution/extinction; Self-organized criticality; Econophysics (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437105010381
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:365:y:2006:i:2:p:499-508
DOI: 10.1016/j.physa.2005.09.061
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().