Topological properties of integer networks
Tao Zhou,
Bing-Hong Wang,
P.M. Hui and
K.P. Chan
Physica A: Statistical Mechanics and its Applications, 2006, vol. 367, issue C, 613-618
Abstract:
Inspired by Pythagoras's belief that numbers represent the reality, we study the topological properties of networks of composite numbers, in which the vertices represent the numbers and two vertices are connected if and only if there exists a divisibility relation between them. The network has a fairly large clustering coefficient C≈0.34, which is insensitive to the size of the network. The average distance between two nodes is shown to have an upper bound that is independent of the size of the network, in contrast to the behavior in small-world and ultra-small-world networks. The out-degree distribution is shown to follow a power-law behavior of the form k-2. In addition, these networks possess hierarchical structure as C(k)∼k-1 in accord with the observations of many real-life networks.
Keywords: Complex networks; Integer networks; Upper bound of average distance (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437105011969
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:367:y:2006:i:c:p:613-618
DOI: 10.1016/j.physa.2005.11.011
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().