EconPapers    
Economics at your fingertips  
 

Aging and coarsening in an ultra-thin film model

Pablo M. Gleiser and Marcelo A. Montemurro

Physica A: Statistical Mechanics and its Applications, 2006, vol. 369, issue 2, 529-534

Abstract: In this work we study the nonequilibrium dynamical properties of an ultra-thin magnetic film model. Previous works on this system revealed the presence of novel dynamical properties that were difficult to interpret within a single physical scenario: on one hand the analysis of the aging properties suggested a glassy behavior. On the other, the study of the violation of the fluctuation dissipation theorem concluded that the system behaved in accordance to a domain growth scenario. More recently, a detailed study of the equilibrium properties determined the existence of metastable states that had not been taken into account so far. Here, we show that the slow growth of the magnetic domains due to the presence of metastable states sets a unified theoretical framework for the interpretation of these results.

Keywords: General theory and models of magnetic ordering; Numerical simulations studies; Dynamic properties (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437105012719
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:369:y:2006:i:2:p:529-534

DOI: 10.1016/j.physa.2005.12.010

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:369:y:2006:i:2:p:529-534