Local and cluster critical dynamics of the 3d random-site Ising model
D. Ivaneyko,
J. Ilnytskyi,
B. Berche and
Yu. Holovatch
Physica A: Statistical Mechanics and its Applications, 2006, vol. 370, issue 2, 163-178
Abstract:
We present the results of Monte Carlo simulations for the critical dynamics of the three-dimensional site-diluted quenched Ising model. Three different dynamics are considered, these correspond to the local update Metropolis scheme as well as to the Swendsen–Wang and Wolff cluster algorithms. The lattice sizes of L=10–96 are analysed by a finite-size-scaling technique. The site dilution concentration p=0.85 was chosen to minimize the correction-to-scaling effects. We calculate numerical values of the dynamical critical exponents for the integrated and exponential autocorrelation times for energy and magnetization. As expected, cluster algorithms are characterized by lower values of dynamical critical exponent than the local one: also in the case of dilution critical slowing down is more pronounced for the Metropolis algorithm. However, the striking feature of our estimates is that they suggest that dilution leads to decrease of the dynamical critical exponent for the cluster algorithms. This phenomenon is quite opposite to the local dynamics, where dilution enhances critical slowing down.
Keywords: Random Ising model; Dynamical critical behaviour; Critical exponents (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106002998
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:370:y:2006:i:2:p:163-178
DOI: 10.1016/j.physa.2006.03.010
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().