Linearisation and potential symmetries of certain systems of diffusion equations
C. Sophocleous and
R.J. Wiltshire
Physica A: Statistical Mechanics and its Applications, 2006, vol. 370, issue 2, 329-345
Abstract:
We consider systems of two pure one-dimensional diffusion equations that have considerable interest in Soil Science and Mathematical Biology. We construct non-local symmetries for these systems. These are determined by expressing the equations in a partially and wholly conserved form, and then by performing a potential symmetry analysis on those systems that can be linearised. We give several examples of such systems, and in a specific case we show how linearising and hodograph-type mappings can lead to new solutions of the diffusion system.
Keywords: Systems of diffusion equations; Potential symmetries; Linearising mappings (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106002883
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:370:y:2006:i:2:p:329-345
DOI: 10.1016/j.physa.2006.03.003
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().