Power-law distributions in random multiplicative processes with non-Gaussian colored multipliers
Shuya Kitada
Physica A: Statistical Mechanics and its Applications, 2006, vol. 370, issue 2, 539-552
Abstract:
One class of universal mechanisms that generate power-law probability distributions is that of random multiplicative processes. In this paper, we consider a multiplicative Langevin equation driven by non-Gaussian colored multipliers. We analytically derive a formula that relates the power-law exponent to the statistics of the multipliers and numerically confirm its validity using multiplicative noise generated by chaotic dynamical systems and by a two-valued Markov process. We also investigate the relationship between our treatment and the large deviation analysis of time series, and demonstrate the appearance of log-periodic fluctuations superimposed on the power-law distribution due to the non-Gaussian nature of the multipliers.
Keywords: Random multiplicative process; Power-law distribution; Non-Gaussian colored noise (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106002494
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:370:y:2006:i:2:p:539-552
DOI: 10.1016/j.physa.2006.02.039
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().