EconPapers    
Economics at your fingertips  
 

Long-memory volatility in derivative hedging

Abby Tan

Physica A: Statistical Mechanics and its Applications, 2006, vol. 370, issue 2, 689-696

Abstract: The aim of this work is to take into account the effects of long memory in volatility on derivative hedging. This idea is an extension of the work by Fedotov and Tan [Stochastic long memory process in option pricing, Int. J. Theor. Appl. Finance 8 (2005) 381–392] where they incorporate long-memory stochastic volatility in option pricing and derive pricing bands for option values. The starting point is the stochastic Black–Scholes hedging strategy which involves volatility with a long-range dependence. The stochastic hedging strategy is the sum of its deterministic term that is classical Black–Scholes hedging strategy with a constant volatility and a random deviation term which describes the risk arising from the random volatility. Using the fact that stock price and volatility fluctuate on different time scales, we derive an asymptotic equation for this deviation in terms of the Green's function and the fractional Brownian motion. The solution to this equation allows us to find hedging confidence intervals.

Keywords: Long memory; Stochastic volatility; Derivative hedging (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106002615
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:370:y:2006:i:2:p:689-696

DOI: 10.1016/j.physa.2006.02.041

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:370:y:2006:i:2:p:689-696