Synchronization in systems with bimodal dynamics
A.P. Kuznetsov,
E. Mosekilde and
L.V. Turukina
Physica A: Statistical Mechanics and its Applications, 2006, vol. 371, issue 2, 280-292
Abstract:
Considering a prototypic model of a bimodal oscillator we investigate the synchronization of the internal time scales for a system with interacting fast and slow oscillatory modes. Particular emphasis is given to the transition between mode-locked and mode-unlocked chaos. It is shown that this transition involves a homoclinic bifurcation in which the synchronized chaotic attractor loses its band structure. For two coupled bimodal oscillators we illustrate the presence of separate synchronization regions for the fast and the slow modes. The dependence of these regions on the mismatch and coupling parameters is studied.
Keywords: Dynamical systems; Synchronization; Two-mode dynamics; Mode-locked and mode-unlocked chaos (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106003645
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:371:y:2006:i:2:p:280-292
DOI: 10.1016/j.physa.2006.03.028
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().