Path integral representation of fractional harmonic oscillator
Chai Hok Eab and
S.C. Lim
Physica A: Statistical Mechanics and its Applications, 2006, vol. 371, issue 2, 303-316
Abstract:
Fractional oscillator process can be obtained as the solution to the fractional Langevin equation. There exist two types of fractional oscillator processes, based on the choice of fractional integro-differential operators (namely Weyl and Riemann-Liouville). An operator identity for the fractional differential operators associated with the fractional oscillators is derived; it allows the solution of fractional Langevin equations to be obtained by simple inversion. The relationship between these two fractional oscillator processes is studied. The operator identity also plays an important role in the derivation of the path integral representation of the fractional oscillator processes. Relevant quantities such as two-point and n-point functions can be calculated from the generating functions.
Keywords: Fractional oscillator process; Path integral; Partition function (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106003669
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:371:y:2006:i:2:p:303-316
DOI: 10.1016/j.physa.2006.03.029
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().