Decoding information from noisy, redundant, and intentionally distorted sources
Yi-Kuo Yu,
Yi-Cheng Zhang,
Paolo Laureti and
Lionel Moret
Physica A: Statistical Mechanics and its Applications, 2006, vol. 371, issue 2, 732-744
Abstract:
Advances in information technology reduce barriers to information propagation, but at the same time they also induce the information overload problem. For the making of various decisions, mere digestion of the relevant information has become a daunting task due to the massive amount of information available. This information, such as that generated by evaluation systems developed by various web sites, is in general useful but may be noisy and may also contain biased entries. In this study, we establish a framework to systematically tackle the challenging problem of information decoding in the presence of massive and redundant data. When applied to a voting system, our method simultaneously ranks the raters and the ratees using only the evaluation data, consisting of an array of scores each of which represents the rating of a ratee by a rater. Not only is our approach effective in decoding information, it is also shown to be robust against various hypothetical types of noise as well as intentional abuses.
Keywords: Reputation systems; Information filtering (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106004766
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:371:y:2006:i:2:p:732-744
DOI: 10.1016/j.physa.2006.04.057
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().