Routes to chaos, universality and glass formation
Fulvio Baldovin
Physica A: Statistical Mechanics and its Applications, 2006, vol. 372, issue 2, 224-237
Abstract:
We review recent results obtained for the dynamics of incipient chaos. These results suggest a common picture underlying the three universal routes to chaos displayed by the prototypical logistic and circle maps. Namely, the period doubling, intermittency, and quasiperiodicity routes. In these situations the dynamical behavior is exactly describable through infinite families of Tsallis’q-exponential functions. Furthermore, the addition of a noise perturbation to the dynamics at the onset of chaos of the logistic map allows to establish parallels with the behavior of supercooled liquids close to glass formation. Specifically, the occurrence of two-step relaxation, aging with its characteristic scaling property, and subdiffusion and arrest is corroborated for such a system.
Keywords: Nonlinear dynamics; Renormalization group; Weak chaos; Glass formation (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843710600848X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:372:y:2006:i:2:p:224-237
DOI: 10.1016/j.physa.2006.08.057
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().