Persistent dynamic correlations in self-organized critical systems away from their critical point
Ryan Woodard,
David E. Newman,
Raúl Sánchez and
Benjamin A. Carreras
Physica A: Statistical Mechanics and its Applications, 2007, vol. 373, issue C, 215-230
Abstract:
We show that correlated dynamics and long time memory persist in self-organized criticality (SOC) systems even when forced away from the defined critical point that exists at vanishing drive strength. These temporal correlations are found for all levels of external forcing as long as the system is not overdriven. They arise from the same physical mechanism that produces the temporal correlations found at the vanishing drive limit, namely the memory of past events stored in the system profile. The existence of these correlations contradicts the notion that a SOC time series is simply a random superposition of events with sizes distributed as a power law, as has been suggested by previous studies.
Keywords: Self-organized criticality; Running sandpile; Correlations; Hurst; Pulses (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106005802
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:373:y:2007:i:c:p:215-230
DOI: 10.1016/j.physa.2006.05.001
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().