EconPapers    
Economics at your fingertips  
 

The characteristic function method applied to molecular dynamics of inelastic granular gases

Antony M.M. Polito, Annibal Figueiredo, Tarcísio M. da Rocha Filho, Frederico V. Prudente and Luis S. Costa

Physica A: Statistical Mechanics and its Applications, 2007, vol. 373, issue C, 392-416

Abstract: In this work we study the dissipative dynamics of a system of smooth hard spheres with a constant restitution coefficient and small number of particles in the homogeneous cooling regime. We focus on the velocity distribution from simulations in the Molecular Dynamics approach. The main goal of this paper is to present a methodology based on the application of the characteristic function technique and the so-called W function, introduced by Lévy to measure the distance of distributions from the Gaussian. We use this methodology to (i) characterize asymptotic stationary states independently of initial conditions; (ii) study the multiple dependence of these stationary states on the number of particles, density regimes and boundary conditions for a fixed restitution coefficient; (iii) discuss the existence of a limit state in the thermodynamic limit; (iv) address the open problem of the convergence of a Sonine expansion in the highly dissipative regime and (v) measure the overpopulated high energy tails. Moreover, we investigate in what sense the theoretical results related to the Enskog–Boltzmann equation can be reproduced.

Keywords: Characteristic function; Molecular dynamics; Granular gases (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106005814
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:373:y:2007:i:c:p:392-416

DOI: 10.1016/j.physa.2005.12.072

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:373:y:2007:i:c:p:392-416