The mean-field adsorption on a sinusoidally corrugated substrate revised
K. Rejmer
Physica A: Statistical Mechanics and its Applications, 2007, vol. 373, issue C, 58-66
Abstract:
The fluid system at the bulk liquid–gas coexistence in a presence of a sinusoidally corrugated substrate exhibits not only the wetting transition, but additionally a first-order, thin–thick transition. The mean-field analysis of this transition based on a simple effective Hamiltonian is valid only in long wavelength limit. In this case the filling transition occurs so close to the wetting temperature, that the behavior of the interface is dominated by fluctuations, therefore the mean-field approach breaks down. We analyze the filling transition with the help of Hamiltonian evaluated from Landau theory. The applicability of our Hamiltonian is not restricted only to the vicinity of the wetting point. We obtain the phase diagram valid beyond the temperature range corresponding to the strong fluctuations regime. It displays more complex dependence on different length scales of the system and includes the old one as a particular case.
Keywords: Surface adsorption; Filling transition (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106006649
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:373:y:2007:i:c:p:58-66
DOI: 10.1016/j.physa.2006.05.051
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().