Asymmetry and long-memory volatility: Some empirical evidence using GARCH
Cheong Chin,
Abu Hassan Shaari Mohd Nor and
Zaidi Isa
Physica A: Statistical Mechanics and its Applications, 2007, vol. 373, issue C, 651-664
Abstract:
This paper investigates the asymmetry and long-memory volatility behavior of the Malaysian Stock Exchange daily data over a period of 1991–2005. The long-spanning data set enable us to examine piecewise before, during and after the economic crisis encountered in the Malaysian stock market. The daily index returns are adjusted for infrequent trading effect and the estimated Hurst's parameter allows us to rank the market efficiency across the periods. The leverage effect, clustering volatility and long-memory behavior of the volatility are fitted by the asymmetry GARCH models and GARCH with the inclusion of realized volatility at the final period. Across the periods, the results show the mixture of symmetry and asymmetry GARCH modeling.
Keywords: Market efficiency; Fractal; Volatility; Non-linearity; GARCH; BDS test; Sign and size bias test (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106006637
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:373:y:2007:i:c:p:651-664
DOI: 10.1016/j.physa.2006.05.050
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().