Volatile jam and flow fluctuation in counter flow of slender particles
Satoru Ito,
Takashi Nagatani and
Tatsuhiko Saegusa
Physica A: Statistical Mechanics and its Applications, 2007, vol. 373, issue C, 672-682
Abstract:
We study the counter flow of slender particles on square lattice under periodic boundaries. Two types of particles going to the right and to the left are taken into account, where the size of right particles is larger than that of left particles. The counter flow of slender particles with different sizes is compared with that of slender particles with the same size. The jamming transition occurs at a critical density. Near the transition point, the volatile jam appears with a period, disappears in time, is formed again, and the process occurs repeatedly. The flow fluctuates highly by forming the volatile jam. The volatile jam moves slowly to the left direction, while the jam is stationary when the size of right particles equals that of left particles.
Keywords: Lattice gas model; Mobile objects; Traffic dynamics; Pedestrian flow (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106004894
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:373:y:2007:i:c:p:672-682
DOI: 10.1016/j.physa.2006.04.067
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().