Kinetic model analysis of time-dependent problems in polyatomic gases
A.S. Fernandes and
W. Marques
Physica A: Statistical Mechanics and its Applications, 2007, vol. 373, issue C, 97-118
Abstract:
In this work we analyze time-dependent problems like sound propagation and light scattering in dilute polyatomic gases by using a kinetic model of the Boltzmann equation that replaces the collision operator by a single relaxation-time term which is compatible with Grad's 6-moment approximation. Comparison of the theoretical results with available experimental data in nitrogen, oxygen, carbon dioxide and methane shows that the model equation can be used to describe the acoustic properties and the light scattering spectrum of polyatomic gases in both hydrodynamic and kinetic regimes as long as the external oscillation frequency is smaller than the frequency required for the translational and the internal degrees of freedom to come to thermal equilibrium.
Keywords: Polyatomic gases; Kinetic model equation; Sound propagation; Light scattering (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106007242
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:373:y:2007:i:c:p:97-118
DOI: 10.1016/j.physa.2006.06.010
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().