EconPapers    
Economics at your fingertips  
 

A fractional-order Darcy's law

J. Alberto Ochoa-Tapia, Francisco J. Valdes-Parada and Jose Alvarez-Ramirez

Physica A: Statistical Mechanics and its Applications, 2007, vol. 374, issue 1, 1-14

Abstract: By using spatial averaging methods, in this work we derive a Darcy's-type law from a fractional Newton's law of viscosity, which is intended to describe shear stress phenomena in non-homogeneous porous media. As a prerequisite towards this end, we derive an extension of the spatial averaging theorem for fractional-order gradients. The usage of this tool for averaging continuity and momentum equations yields a Darcy's law with three contributions: (i) similar to the classical Darcy's law, a term depending on macroscopic pressure gradients and gravitational forces; (ii) a fractional convective term induced by spatial porosity gradients; and (iii) a fractional Brinkman-type correction. In the three cases, the corresponding permeability tensors should be computed from a fractional boundary-value problem within a representative cell. Consistency of the resulting Darcy's-type law is demonstrated by showing that it is reduced to the classical one in the case of integer-order velocity gradients and homogeneous porous media.

Keywords: Darcy's law; Fractional constitutive equation; Volume averaging (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106008065
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:374:y:2007:i:1:p:1-14

DOI: 10.1016/j.physa.2006.07.033

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:374:y:2007:i:1:p:1-14