Quantum Bohmian model for financial market
Olga Al. Choustova
Physica A: Statistical Mechanics and its Applications, 2007, vol. 374, issue 1, 304-314
Abstract:
We apply methods of quantum mechanics for mathematical modeling of price dynamics at the financial market. The Hamiltonian formalism on the price/price-change phase space describes the classical-like evolution of prices. This classical dynamics of prices is determined by “hard” conditions (natural resources, industrial production, services and so on). These conditions are mathematically described by the classical financial potential V(q), where q=(q1,…,qn) is the vector of prices of various shares. But the information exchange and market psychology play important (and sometimes determining) role in price dynamics. We propose to describe such behavioral financial factors by using the pilot wave (Bohmian) model of quantum mechanics. The theory of financial behavioral waves takes into account the market psychology. The real trajectories of prices are determined (through the financial analogue of the second Newton law) by two financial potentials: classical-like V(q) (“hard” market conditions) and quantum-like U(q) (behavioral market conditions).
Keywords: Quantum mechanics; Financial market; Information field of expectations; Bohmian mechanics; Information pilot wave (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106007813
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:374:y:2007:i:1:p:304-314
DOI: 10.1016/j.physa.2006.07.029
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().