EconPapers    
Economics at your fingertips  
 

One-dimensional non-relativistic and relativistic Brownian motions: a microscopic collision model

Jörn Dunkel and Peter Hänggi

Physica A: Statistical Mechanics and its Applications, 2007, vol. 374, issue 2, 559-572

Abstract: We study a simple microscopic model for the one-dimensional stochastic motion of a (non-)relativistic Brownian particle, embedded into a heat bath consisting of (non-)relativistic particles. The stationary momentum distributions are identified self-consistently (for both Brownian and heat bath particles) by means of two coupled integral criteria. The latter follow directly from the kinematic conservation laws for the microscopic collision processes, provided one additionally assumes probabilistic independence of the initial momenta. It is shown that, in the non-relativistic case, the integral criteria do correctly identify the Maxwellian momentum distributions as stationary (invariant) solutions. Subsequently, we apply the same criteria to the relativistic case. Surprisingly, we find here that the stationary momentum distributions differ slightly from the standard Jüttner distribution by an additional prefactor proportional to the inverse relativistic kinetic energy.

Keywords: Random walk; Lattice models; Relativistic Brownian motion; Relativistic collision processes (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106008016
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:374:y:2007:i:2:p:559-572

DOI: 10.1016/j.physa.2006.07.013

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:374:y:2007:i:2:p:559-572