Stationary and dynamical properties of finite N-unit Langevin models subjected to multiplicative noises
Hideo Hasegawa
Physica A: Statistical Mechanics and its Applications, 2007, vol. 374, issue 2, 585-599
Abstract:
We have studied the finite N-unit Langevin model subjected to multiplicative noises, by using the augmented moment method (AMM), as a continuation of our previous paper [H. Hasegawa, J. Phys. Soc. Japan 75 (2006) 033001]. Effects of couplings on stationary and dynamical properties of the model have been investigated. The difference and similarity between the results of diffusive and sigmoid couplings are studied in details. Time dependences of average and fluctuations in local and global variables calculated by the AMM are in good agreement with those of direct simulations (DSs). We also discuss stationary distributions of local and global variables with the use of the Fokker–Planck equation (FPE) method and DSs. It is demonstrated that stationary distributions show much variety when multiplicative noise and external inputs are taken into account.
Keywords: Langevin model; Multiplicative noise (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106008375
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:374:y:2007:i:2:p:585-599
DOI: 10.1016/j.physa.2006.08.053
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().