Convergence dynamics of the Bak–Sneppen model: Activity rate and waiting time distribution
Ugur Tirnakli and
Marcelo L. Lyra
Physica A: Statistical Mechanics and its Applications, 2007, vol. 375, issue 1, 103-109
Abstract:
In this work, we study the convergence dynamics of two independent random configurations of the Bak–Sneppen model of self-organized criticality evolving under the same external noise. A recently proposed measure of the Hamming distance which considers the minimum difference between displaced configurations is used. The displacement evolves in time intermittently. We compute the jump activity rate and waiting time distribution and report on their asymptotic power-law scaling which characterizes the slow relaxation and the absence of typical length and time scales typical of critical dynamical systems.
Keywords: Critical dynamics; Bak–Sneppen model (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106008879
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:375:y:2007:i:1:p:103-109
DOI: 10.1016/j.physa.2006.08.029
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().