Evolving model of weighted networks inspired by scientific collaboration networks
Menghui Li,
Jinshan Wu,
Dahui Wang,
Tao Zhou,
Zengru Di and
Ying Fan
Physica A: Statistical Mechanics and its Applications, 2007, vol. 375, issue 1, 355-364
Abstract:
Inspired by scientific collaboration networks (SCN), especially our empirical analysis of econophysicists network, an evolutionary model for weighted networks is proposed. Besides a new vertex added in at every time step, old vertices can also attempt to build up new links, or to reconnect the existing links. The number of connections repeated between two nodes is converted into the weight of the link. This provides a natural way for the evolution of link weight. The path-dependent preferential attachment mechanism with local information is also introduced. It increases the clustering coefficient of the network significantly. The model shows the scale-free phenomena in degree and vertex weight distribution. It also gives well qualitatively consistent behavior with the empirical results.
Keywords: Weighted networks; Scientific collaboration network; Evolving model (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106008806
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:375:y:2007:i:1:p:355-364
DOI: 10.1016/j.physa.2006.08.023
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().