Transition from pushed-to-pulled fronts in piecewise linear reaction–diffusion systems
V. Méndez,
V. Ortega-Cejas,
E.P. Zemskov and
J. Casas-Vázquez
Physica A: Statistical Mechanics and its Applications, 2007, vol. 375, issue 1, 51-64
Abstract:
The front dynamics in reaction–diffusion equations with a piecewise linear reaction term is studied. A transition from pushed-to-pulled fronts when they propagate into the unstable state is found using a variational principle. This transition occurs for a critical value of the discontinuity position in the reaction function. In particular, we study how the transition depends on the properties of the reaction term and on the delay time. Our results are in good agreement with the numerical solutions of the model.
Keywords: Pulled fronts; Pushed fronts; Reaction–diffusion (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106009903
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:375:y:2007:i:1:p:51-64
DOI: 10.1016/j.physa.2006.09.007
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().