A family of evolution equations with nonlinear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions
P. Troncoso,
O. Fierro,
S. Curilef and
A.R. Plastino
Physica A: Statistical Mechanics and its Applications, 2007, vol. 375, issue 2, 457-466
Abstract:
A family of evolution equations describing a power-law nonlinear diffusion process coupled with a local Verhulst-like growth dynamics, and incorporating a global regulation mechanism, is considered. These equations admit an interpretation in terms of population dynamics, and are related to the so-called conserved Fisher equation. Exact time-dependent solutions exhibiting a maximum nonextensive q-entropy shape are obtained.
Keywords: Nonlinear diffusion; Fisher equation; Population dynamics; Nonextensive entropy (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106010569
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:375:y:2007:i:2:p:457-466
DOI: 10.1016/j.physa.2006.10.010
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().