Some insights in superdiffusive transport
M. Marseguerra and
A. Zoia
Physica A: Statistical Mechanics and its Applications, 2007, vol. 377, issue 1, 1-14
Abstract:
In a wide range of systems, the relaxation in response to an initial pulse has been experimentally found to follow a nonlinear relationship for the mean squared displacement, of the kind 〈x2(t)〉∝tα, where α may be greater or smaller than 1. Such phenomena have been described under the generic term of anomalous diffusion. “Lévy flights” stochastic processes lead to superdiffusive behaviour (1<α<2) and have been recently proposed to model—among the others—the subsurface contaminant spread in highly heterogeneous media under the effects of water flow. In this paper, within the continuous-time random walk (CTRW) approach to anomalous diffusion, we compare the analytical solution of the approximated fractional diffusion equation (FDE) with the Monte Carlo one, obtained by simulating the superdiffusive behaviour of an ensemble of particle in a medium. We show that the two are neatly different as the process approaches the standard diffusive behaviour. We argue that this is due to a truncation in the Fourier space expansion introduced by the FDE approach. We propose a second-order correction to this expansion and numerically solve the CTRW model under this hypothesis: the accuracy of the results thus obtained is validated through Monte Carlo simulation over all the superdiffusive range. The same kind of discrepancy is shown to occur also in the derivation of the fractional moments of the distribution: analogous corrections are proposed and validated through the Monte Carlo approach.
Keywords: Lévy flights; Fractional diffusion equation; CTRW; Monte Carlo (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843710601199X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:377:y:2007:i:1:p:1-14
DOI: 10.1016/j.physa.2006.11.040
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().