EconPapers    
Economics at your fingertips  
 

A note on scaled variance ratio estimation of the Hurst exponent with application to agricultural commodity prices

Calum Turvey

Physica A: Statistical Mechanics and its Applications, 2007, vol. 377, issue 1, 155-165

Abstract: The measure of long-term memory is important for the study of economic and financial time series. This paper estimates the Hurst exponent from a Scaled Variance Ratio model for 17 commodity price series under the efficient market null H0:H=0.5. The distribution about the estimates of H are obtained from 90%, 95% and 99% confidence intervals generated from 20,000 Monte Carlo replications of a geometric Brownian motion. The results show that the scaled variance ratio provides a very good and stable estimate of the Hurst exponent, but the estimates can be quite different from the measure obtained from rescaled range or R–S analysis. In general commodity prices are consistent with the underlying assumption of a geometric Brownian motion.

Keywords: Fractional Brownian motion; Geometric Brownian motion; Scaled variance ratios; Agricultural commodity prices (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106012374
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:377:y:2007:i:1:p:155-165

DOI: 10.1016/j.physa.2006.11.022

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:377:y:2007:i:1:p:155-165