Statistical distribution and time correlation of stock returns runs
Honggang Li and
Yan Gao
Physica A: Statistical Mechanics and its Applications, 2007, vol. 377, issue 1, 193-198
Abstract:
In this paper, we focus on the statistical features and time correlation of runs which is defined as a sequence of consecutive gain/loss (rise/fall) stock returns. By studying daily data of the Dow Jones industrial average (DJIA), we get the following points: firstly, the distribution of length and magnitude of stock returns runs both follow an exponential law; secondly, runs length do lack significant time correlation, while runs magnitude exhibit a slow decay of time correlation with long persistence up to several months, which implies existence of volatility clustering. We expect the above properties may add new members to the family of stylized facts about stock returns.
Keywords: Runs; Stock market; Statistical distribution; Time correlation (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843710601209X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:377:y:2007:i:1:p:193-198
DOI: 10.1016/j.physa.2006.11.016
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().