EconPapers    
Economics at your fingertips  
 

A general geometric growth model for pseudofractal scale-free web

Zhongzhi Zhang, Lili Rong and Shuigeng Zhou

Physica A: Statistical Mechanics and its Applications, 2007, vol. 377, issue 1, 329-339

Abstract: We propose a general geometric growth model for pseudofractal scale-free web (PSW), which is controlled by two tunable parameters. We derive exactly the main characteristics of the networks: degree distribution, second moment of degree distribution, degree correlations, distribution of clustering coefficient, as well as the diameter, which are partially determined by the parameters. Analytical results show that the resulting networks are disassortative and follow power-law degree distributions with a more general degree exponent tuned from 2 to 1+ln3ln2; the clustering coefficient of each individual node is inversely proportional to its degree and the average clustering coefficient of all nodes approaches to a large nonzero value in the infinite network order; the diameter grows logarithmically with the number of network nodes. All these reveal that the networks described by our model have small-world effect and scale-free topology.

Keywords: Complex networks; Scale-free networks; Disordered systems; Networks (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106012003
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:377:y:2007:i:1:p:329-339

DOI: 10.1016/j.physa.2006.11.006

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:377:y:2007:i:1:p:329-339