EconPapers    
Economics at your fingertips  
 

On the extended Kolmogorov–Nagumo information-entropy theory, the q→1/q duality and its possible implications for a non-extensive two-dimensional Ising model

Marco Masi

Physica A: Statistical Mechanics and its Applications, 2007, vol. 377, issue 1, 67-78

Abstract: The aim of this paper is to investigate the q→1/q duality in an information-entropy theory of all q-generalized entropy functionals (Tsallis, Renyi and Sharma–Mittal measures) in the light of a representation based on generalized exponential and logarithm functions subjected to Kolmogorov's and Nagumo's averaging. We show that it is precisely in this representation that the form invariance of all entropy functionals is maintained under the action of this duality. The generalized partition function also results to be a scalar invariant under the q→1/q transformation which can be interpreted as a non-extensive two-dimensional Ising model duality between systems governed by two different power law long-range interactions and temperatures. This does not hold only for Tsallis statistics, but is a characteristic feature of all stationary distributions described by q-exponential Boltzmann factors.

Keywords: Generalized information entropy measures; Tsallis; Renyi; Sharma–Mittal; Maximum entropy principle; Ising duality (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106011940
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:377:y:2007:i:1:p:67-78

DOI: 10.1016/j.physa.2006.11.019

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:377:y:2007:i:1:p:67-78