EconPapers    
Economics at your fingertips  
 

Phase transitions and overlapping modules in complex networks

Tamás Vicsek

Physica A: Statistical Mechanics and its Applications, 2007, vol. 378, issue 1, 20-32

Abstract: Complex systems can be described in terms of networks capturing the intricate web of connections among the units they are made of. Here we review two aspects of the possible organization of such networks. First, we provide a phenomenological theory for topological transitions in restructuring networks. In this statistical mechanical approach energy is assigned to the different network topologies and temperature is used as a quantity referring to the level of noise during the rewiring of the edges. In our studies we find a rich variety of topological phase transitions when the temperature is varied. These transitions signal singular changes in the essential features of the global structure. Next, we address a question of great current interest which is about the modular structure of networks. We describe, how to interpret the global organization as the coexistence of structural sub-units (modules or communities) associated with more highly interconnected parts. The existing deterministic methods used for large networks find separated communities, while most of the actual networks are made of highly overlapping cohesive groups of nodes. We describe a recently introduced an approach to analyze the main statistical features of the interwoven sets of overlapping communities making a step towards the uncovering of the modular structure of complex systems. Our approach is based on defining communities as clusters of percolating complete subgraphs called k-cliques. We present the basic features of the associated percolation transition of overlapping k-cliques. After defining a set of new characteristic quantities for the statistics of communities, we apply an efficient technique to explore overlapping communities on a large scale. We find that overlaps are significant, and the distributions we introduce reveal universal features of networks.

Keywords: Networks; Clustering; Modules; Phase transition; Percolation (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106012623
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:378:y:2007:i:1:p:20-32

DOI: 10.1016/j.physa.2006.11.075

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:378:y:2007:i:1:p:20-32