EconPapers    
Economics at your fingertips  
 

Transition to chaos in discrete nonlinear Schrödinger equation with long-range interaction

Nickolay Korabel and George M. Zaslavsky

Physica A: Statistical Mechanics and its Applications, 2007, vol. 378, issue 2, 223-237

Abstract: Discrete nonlinear Schrödinger (DNLS) equation describes a chain of oscillators with nearest-neighbor interactions and a specific nonlinear term. We consider its modification with long-range interaction through a potential proportional to 1/l1+α with fractional α<2 and l as a distance between oscillators. This model is called αDNLS. It exhibits competition between the nonlinearity and a level of correlation between interacting far-distanced oscillators, that is defined by the value of α. We consider transition to chaos in this system as a function of α and nonlinearity. It is shown that decreasing of α with respect to nonlinearity stabilize the system. Connection of the model to the fractional generalization of the NLS (called FNLS) in the long-wave approximation is also discussed and some of the results obtained for αDNLS can be correspondingly extended to the FNLS.

Keywords: Long-range interaction; Discrete NLS; Fractional equations; Spatio–temporal chaos (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106010776
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:378:y:2007:i:2:p:223-237

DOI: 10.1016/j.physa.2006.10.041

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:378:y:2007:i:2:p:223-237