Dynamics of allosteric action in multisite protein modification
Edoardo Milotti,
Alessio Del Fabbro,
Chiara Dalla Pellegrina and
Roberto Chignola
Physica A: Statistical Mechanics and its Applications, 2007, vol. 379, issue 1, 133-150
Abstract:
Protein functions in cells may be activated or modified by the attachment of several kinds of chemical groups. While protein phosphorylation, i.e., the attachment of a phosphoryl (PO3-) group, is the most studied form of protein modification, and is known to regulate the functions of many proteins, protein behavior can also be modified by nitrosylation, acetylation, methylation, etc. A protein can have multiple modification sites, and displays some form of transition only when enough sites are modified. In a previous paper we have modeled the generic equilibrium properties of multisite protein modification [R. Chignola, C. Dalla Pellegrina, A. Del Fabbro, E. Milotti, Physica A 371 (2006) 463] and we have shown that it can account both for sharp, robust thresholds and for information transfer between processes with widely separated timescales. Here we use the same concepts to expand that analysis starting from a dynamical description of multisite modification: we give analytical results for the basic dynamics and numerical results in an example where the modification chain is cascaded with a Michaelis–Menten step. We modify the dynamics and analyze an example with realistic phosphorylation/dephosphorylation steps, and give numerical evidence of the independence of the allosteric effect from the details of the attachment–detachment processes. We conclude that multisite protein modification is dynamically equivalent to the classic allosteric effect.
Keywords: Multisite phosphorylation; Nitrosylation; Threshold effect; Biochemical model; Network dynamics (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437106013823
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:379:y:2007:i:1:p:133-150
DOI: 10.1016/j.physa.2006.12.034
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().