EconPapers    
Economics at your fingertips  
 

The sunspot as an autonomous dynamical system: A model for the growth and decay phases of sunspots

George Livadiotis and Xenophon Moussas

Physica A: Statistical Mechanics and its Applications, 2007, vol. 379, issue 2, 436-458

Abstract: This paper presents a model for describing the sunspot as an autonomous dynamical system both in its growth and decay phases. The model consists of a two-dimensional system of ordinary differential equations (ODE) of first order with respect to time. The two time-dependent functions are the area of the sunspot on the photosphere, A(t), and the mean spatial value of the magnetic field strength inside the sunspot, B(t). The model reproduces both the sunspot growth and decay phases. Emphasis is placed on the three main decay laws supported by the observational data, namely the linear, the parabolic and the exponential. In particular, the model reproduces each one of the three decay laws for different times of the decay phase. We also calculate an upper limit for the area of sunspots. The experimental log-normal distribution of the maximum sunspot areas is satisfactorily derived. By setting the initial area of sunspots equal to the area of the finest structure observed in the quiet Sun, namely the granules, a method for calculating the mean dimensions of granules is deduced. This is achieved by implementing a fitting method, based on the q-norm, between the theoretical and the experimental distributions of the maximum areas. We show that the method of the absolute deviations minimization (q=1) performs the largest sensitivity in regard to the alternative fitting methods based on other q-norms. Finally, we consider a non-integrable extension of the model which exhibits chaotic behavior.

Keywords: Sunspots; Fitting methods; Sensitivity of fitting methods; Solar granules (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107001239
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:379:y:2007:i:2:p:436-458

DOI: 10.1016/j.physa.2007.02.003

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:379:y:2007:i:2:p:436-458