EconPapers    
Economics at your fingertips  
 

On the emergence of scaling in weighted networks

W Jeżewski

Physica A: Statistical Mechanics and its Applications, 2007, vol. 379, issue 2, 691-700

Abstract: General conditions for the appearance of the power-law distribution of total weights concentrated in vertices of complex network systems are established. By use of the rate equation approach for networks evolving by connectivity-governed attachment of every new node to p⩾1 exiting nodes and by ascription to every new link a weight taken from algebraic distributions, independent of network topologies, it is shown that the distribution of the total weight w asymptotically follows the power law, P(w)∼w-α with the exponent α∈(0,2]. The power-law dependence of the weight distribution is also proved to hold, for asymptotically large w, in the case of networks in which a link between nodes i and j carries a load wij, determined by node degrees ki and kj at the final stage of the network growth, according to the relation wij=(kikj)θ with θ∈(-1,0]. For this class of networks, the scaling exponent σ describing the weight distribution is found to satisfy the relationship σ=(λ+θ)/(1+θ), where λ is the scaling index characterizing the distribution of node degrees, n(k)∼k-λ.

Keywords: Weighted networks; Rate equations; Scaling relations (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843710700088X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:379:y:2007:i:2:p:691-700

DOI: 10.1016/j.physa.2007.01.004

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:379:y:2007:i:2:p:691-700