The scope of the LeChatelier Principle
George M. Lady and
James P. Quirk
Physica A: Statistical Mechanics and its Applications, 2007, vol. 381, issue C, 351-365
Abstract:
LeChatelier [Comptes Rendus 99 (1884) 786; Ann. Mines 13 (2) (1888) 157] showed that a physical system's “adjustment” to a disturbance to its equilibrium tended to be smaller as constraints were added to the adjustment process. Samuelson [Foundations of Economic Analysis, Harvard University Press, Cambridge, 1947] applied this result to economics in the context of the comparative statics of the actions of individual agents characterized as the solutions to optimization problems; and later (1960), extended the application of the Principle to a stable, multi-market equilibrium and the case of all commodities gross substitutes [e.g., L. Metzler, Stability of multiple markets: the hicks conditions. Econometrica 13 (1945) 277–292]. Refinements and alternative routes of derivation have appeared in the literature since then, e.g., Silberberg [The LeChatelier Principle as a corollary to a generalized envelope theorem, J. Econ. Theory 3 (1971) 146–155; A revision of comparative statics methodology in economics, or, how to do comparative statics on the back of an envelope, J. Econ. Theory 7 (1974) 159–172], Milgrom and Roberts [The LeChatelier Principle, Am. Econ. Rev. 86 (1996) 173–179], W. Suen, E. Silberberg, P. Tseng [The LeChatelier Principle: the long and the short of it, Econ. Theory 16 (2000) 471–476], and Chavas [A global analysis of constrained behavior: the LeChatelier Principle ‘in the large’, South. Econ. J. 72 (3) (2006) 627–644]. In this paper, we expand the scope of the Principle in various ways keyed to Samuelson's proposed means of testing comparative statics results (optimization, stability, and qualitative analysis). In the optimization framework, we show that the converse LeChatelier Principle also can be found in constrained optimization problems and for not initially “conjugate” sensitivities. We then show how the Principle and its converse can be found through the qualitative analysis of any linear system. In these terms, the Principle and its converse also may be found in the same system at the same time with respect to the imposition of the same constraint. Based upon this, we expand the cases for which the Principle can be found based upon the stability hypothesis.
Keywords: LeChatelier; Qualitative systems; Comparative statics (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107003354
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:381:y:2007:i:c:p:351-365
DOI: 10.1016/j.physa.2007.04.001
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().