Modeling long-range memory trading activity by stochastic differential equations
V. Gontis and
B. Kaulakys
Physica A: Statistical Mechanics and its Applications, 2007, vol. 382, issue 1, 114-120
Abstract:
We propose a model of fractal point process driven by the nonlinear stochastic differential equation. The model is adjusted to the empirical data of trading activity in financial markets. This reproduces the probability distribution function and power spectral density of trading activity observed in the stock markets. We present a simple stochastic relation between the trading activity and return, which enables us to reproduce long-range memory statistical properties of volatility by numerical calculations based on the proposed fractal point process.
Keywords: Stochastic equations; Point processes; Financial markets (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107001410
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:382:y:2007:i:1:p:114-120
DOI: 10.1016/j.physa.2007.02.012
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().