EconPapers    
Economics at your fingertips  
 

Market memory and fat tail consequences in option pricing on the expOU stochastic volatility model

Josep Perelló

Physica A: Statistical Mechanics and its Applications, 2007, vol. 382, issue 1, 213-218

Abstract: The expOU stochastic volatility model is capable of reproducing fairly well most important statistical properties of financial markets daily data. Among them, the presence of multiple time scales in the volatility autocorrelation is perhaps the most relevant which makes appear fat tails in the return distributions. This paper wants to go further on with the expOU model we have studied in Ref. [J. Masoliver, J. Perelló, Quant. Finance 6 (2006) 423] by exploring an aspect of practical interest. Having as a benchmark the parameters estimated from the Dow Jones daily data, we want to compute the price for the European option. This is actually done by Monte Carlo, running a large number of simulations. Our main interest is to “see” the effects of a long-range market memory from our expOU model in its subsequent European call option. We pay attention to the effects of the existence of a broad range of time scales in the volatility. We find that a richer set of time scales brings the price of the option higher. This appears in clear contrast to the presence of memory in the price itself which makes the price of the option cheaper.

Keywords: Stochastic volatility; Option pricing; Long memory (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107001537
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:382:y:2007:i:1:p:213-218

DOI: 10.1016/j.physa.2007.02.050

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:382:y:2007:i:1:p:213-218