EconPapers    
Economics at your fingertips  
 

A comment on the paper “Stochastic feedback, nonlinear families of Markov processes, and nonlinear Fokker–Planck equations” by T.D. Frank

Joseph L. McCauley

Physica A: Statistical Mechanics and its Applications, 2007, vol. 382, issue 2, 445-452

Abstract: The purpose of this comment is to correct mistaken assumptions and claims made in the paper “Stochastic feedback, nonlinear families of Markov processes, and nonlinear Fokker–Planck equations” by T. D. Frank [T.D. Frank, Stochastic feedback, non-linear families of Markov processes, and nonlinear Fokker–Planck equations, Physica A 331 (2004) 391]. Our comment centers on the claims of a “non-linear Markov process” and a “non-linear Fokker–Planck equation.” First, memory in transition densities is misidentified as a Markov process. Second, the paper assumes that one can derive a Fokker–Planck equation from a Chapman–Kolmogorov equation, but no proof was offered that a Chapman–Kolmogorov equation exists for the memory-dependent processes considered. A “non-linear Markov process” is claimed on the basis of a non-linear diffusion pde for a 1-point probability density. We show that, regardless of which initial value problem one may solve for the 1-point density, the resulting stochastic process, defined necessarily by the conditional probabilities (the transition probabilities), is either an ordinary linearly generated Markovian one, or else is a linearly generated non-Markovian process with memory. We provide explicit examples of diffusion coefficients that reflect both the Markovian and the memory-dependent cases. So there is neither a “non-linear Markov process”, nor a “non-linear Fokker–Planck equation” for a conditional probability density. The confusion rampant in the literature arises in part from labeling a non-linear diffusion equation for a 1-point probability density as “non-linear Fokker–Planck,” whereas neither a 1-point density nor an equation of motion for a 1-point density can define a stochastic process. In a closely related context, we point out that Borland misidentified a translation invariant 1-point probability density derived from a non-linear diffusion equation as a conditional probability density. Finally, in the we present the theory of Fokker–Planck pdes and Chapman–Kolmogorov equations for stochastic processes with finite memory.

Keywords: Markov process; Fokker–Planck equation; Nonlinear Markov process; Nonlinear Fokker–Planck equation; Chapman–Kolmogorov equation; Martingale; Memory process (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843710700310X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:382:y:2007:i:2:p:445-452

DOI: 10.1016/j.physa.2007.03.020

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:382:y:2007:i:2:p:445-452