Spectral and network methods in the analysis of correlation matrices of stock returns
Tapio Heimo,
Jari Saramäki,
Jukka-Pekka Onnela and
Kimmo Kaski
Physica A: Statistical Mechanics and its Applications, 2007, vol. 383, issue 1, 147-151
Abstract:
Correlation matrices inferred from stock return time series contain information on the behaviour of the market, especially on clusters of highly correlating stocks. Here we study a subset of New York Stock Exchange (NYSE) traded stocks and compare three different methods of analysis: (i) spectral analysis, i.e. investigation of the eigenvalue–eigenvector pairs of the correlation matrix, (ii) asset trees, obtained by constructing the maximal spanning tree of the correlation matrix, and (iii) asset graphs, which are networks in which the strongest correlations are depicted as edges. We illustrate and discuss the localisation of the most significant modes of fluctuation, i.e. eigenvectors corresponding to the largest eigenvalues, on the asset trees and graphs.
Keywords: Asset; Stock; Correlation; Complex networks; Spectral analysis (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107005092
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:383:y:2007:i:1:p:147-151
DOI: 10.1016/j.physa.2007.04.124
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().