Fractional dynamics of systems with long-range space interaction and temporal memory
Vasily E. Tarasov and
George M. Zaslavsky
Physica A: Statistical Mechanics and its Applications, 2007, vol. 383, issue 2, 291-308
Abstract:
Field equations with time and coordinate derivatives of noninteger order are derived from a stationary action principle for the cases of power-law memory function and long-range interaction in systems. The method is applied to obtain a fractional generalization of the Ginzburg–Landau and nonlinear Schrödinger equations. As another example, dynamical equations for particle chains with power-law interaction and memory are considered in the continuous limit. The obtained fractional equations can be applied to complex media with/without random parameters or processes.
Keywords: Fractional derivatives; Fractional equations; Long-range interaction; Power-law memory (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107004311
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:383:y:2007:i:2:p:291-308
DOI: 10.1016/j.physa.2007.04.050
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().