Random, but not so much a parameterization for the returns and correlation matrix of financial time series
André C.R. Martins
Physica A: Statistical Mechanics and its Applications, 2007, vol. 383, issue 2, 527-532
Abstract:
A parameterization that is a modified version of a previous work is proposed for the returns and correlation matrix of financial time series and its properties are studied. This parameterization allows easy introduction of non-stationarity and it shows several of the characteristics of the true, observed realizations, such as fat tails, volatility clustering, and a spectrum of eigenvalues of the correlation matrix that can be understood as an extension of Random Matrix Theory results. The predicted behavior of this parameterization for the eigenvalues is compared with the eigenvalues of Brazilian assets and it is shown that those predictions fit the data better than Random Matrix Theory.
Keywords: Correlation matrix; Random Matrix Theory; Time series; Non-stationarity (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107002166
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:383:y:2007:i:2:p:527-532
DOI: 10.1016/j.physa.2007.02.108
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().