Random pseudofractal networks with competition
Lei Wang,
Hua-ping Dai and
You-xian Sun
Physica A: Statistical Mechanics and its Applications, 2007, vol. 383, issue 2, 763-772
Abstract:
In this paper, we present a simple rule which assigns fitness to each edge to generate random pseudofractal networks (RPNs). This RPN model is both scale-free and small-world. We obtain the theoretical results that the power-law exponent is γ=2+1/(1+α) for the tunable parameter α>-1, and that the degree distribution is of an exponential form for others. Analytical results also show that an RPN has a large clustering coefficient and can process hierarchical structure as C(k)∼k-1 that is in accordance with many real networks. And we prove that the mean distance L(N) scales slower logarithmically with network size N. In particular, we explain the effect of nodes with degree 2 on the clustering coefficient. These results agree with numerical simulations very well.
Keywords: Growing networks; Scale-free feature; Small-world effect (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107001252
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:383:y:2007:i:2:p:763-772
DOI: 10.1016/j.physa.2007.02.115
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().