Kolmogorov dispersion for turbulence in porous media: A conjecture
Bikas K. Chakrabarti
Physica A: Statistical Mechanics and its Applications, 2007, vol. 384, issue 1, 25-27
Abstract:
We will utilise the self-avoiding walk (SAW) mapping of the vortex line conformations in turbulence to get the Kolmogorov scale dependence of energy dispersion from SAW statistics, and the knowledge of the effects of disordered fractal geometries on the SAW statistics. These will give us the Kolmogorov energy dispersion exponent value for turbulence in porous media in terms of the size exponent for polymers in the same. We argue that the exponent value will be somewhat less than 53 for turbulence in porous media.
Keywords: Fractals; Turbulence; Self-avoiding walks (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107004402
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:384:y:2007:i:1:p:25-27
DOI: 10.1016/j.physa.2007.04.116
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().