EconPapers    
Economics at your fingertips  
 

How to discriminate easily between directed-percolation and Manna scaling

Juan A. Bonachela and Miguel A. Muñoz

Physica A: Statistical Mechanics and its Applications, 2007, vol. 384, issue 1, 89-93

Abstract: Here we compare critical properties of systems in the directed-percolation (DP) universality class with those of absorbing-state phase transitions occurring in the presence of a non-diffusive conserved field, i.e., transitions in the so-called Manna or C-DP class. Even if it is clearly established that these constitute two different universality classes, most of their universal features (exponents, moment ratios, scaling functions,...) are very similar, making it difficult to discriminate numerically between them. Nevertheless, as illustrated here, the two classes behave in a rather different way upon introducing a physical boundary or wall. Taking advantage of this, we propose a simple and fast method to discriminate between these two universality classes. This is particularly helpful in solving some existing discrepancies in self-organized critical systems as sandpiles.

Keywords: Self-organization; Universality; Critical phenomena (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437107004529
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:384:y:2007:i:1:p:89-93

DOI: 10.1016/j.physa.2007.04.110

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:384:y:2007:i:1:p:89-93